Modeling Video Evolution For Action Recognition
Abstract
本文展示了一种能够捕获视频时序信息的方法。该方法假定能时序性排序视频帧的函数(a function capable of ording the frames of a video)也能非常好的捕获视频中视觉上的演变(evolution of the appearance within the video)。因此本文的重点是,作者通过使用ranking machine学习这样的排序函数并且使用其对应的参数作为一个新的视频表征。并在通用动作识别数据集Hollywood2、HMDB51、细颗粒度的动作MPII-cooking activities和姿势数据集Chalearn中有7%-10%的提升。同时该方法是一种对视频视觉特征的编码,独立于特征提取方法,也就是说视觉特征提取方法越好,编码后对视频动作识别效果也能相应有提升。
Introduction
在过去十年动作识别的研究主要是在设计时间空间(spatio-temporal)的特征,下面有关的几篇论文:
- from temporal interest points over dense sampling to dense trajectories.
- [On space-time interest points]
- [Learning realistic human actions from movies]
- [Dense trajectories and motion boundary descriptors for action recognition]
- from gradient-based descriptors to motion-based and motion-compensated ones.
- [Better exploiting motion for better action recognition]
- adoption of powerful encoding schemes, Fisher Vectors.
- [Action recognition with improved trajectories]
提到从视觉上建模时序的演变信息比较困难,研究者们提出了很多方法建模时序信息:HMM,CRF,deep network.
Modeling the video-wide temporal evolution of appearance in videos remains a challenging task, due to the large variability and complexity of video data. Actions are performed at largely varying speeds. Also the speed of the action often varies non-linearly within a single video.
而本文提出一种新的时序信息的建模思路,其本质来源是:
Nevertheless, it is clear that many actions have a characteristic temporal ordering. More precisely, given all the frames of the video, we learn how to arrange them in chronological order, based on the content of the frames.
Related work
略…
Modeling Video-wide temporal evolution (VideoDarwin)
- Video \(X = [x_1, x_2, …, x_n]\) composed of \(n\) frames and frame at \(t\) is represented by vector \(x_t \in R^D\).
- Define a vector valued function \(V\). The output of the vector valued function \(v_t\) is obtained by processing all the frames up to time \(t\), \(x_{1:t}\). For example, the vector \(v_t\) can be obtained by applying the mean operation on all of the frames \(x_{1:t}\).
- Define \(\Psi(v; u) = u^T \cdot v\).
- Namely, the learning to rank problem optimizes the parameters \(u\) of the function \(\Psi(v; u)\), such that \(\forall t_i, t_j , v_{t_i} ≻ v_{t_j} \Leftrightarrow u^T ⋅v_{t_i} > u^T ⋅v_{t_j} \).
这里的思想是找到一个向量\(u\),使得\(v_i\)和\(v_j\)在该方向上的投影仍然满足时序排序,那么该向量就能表征时序上的演变,也能把许多帧用一个向量表示。论文中给出了向量\(u\)的优化求法,据论文所述是使用RankSVM,
条件1,\(u^T \cdot (v_{t_i} − v_{t_j} ) \geq 1 − \epsilon_{ij}\),即是要满足排序条件大于一个单位量并且有一个松弛因子,如果松弛因子过大会惩罚优化函数。在作者的开源代码(VideoDarwin.m)中作者是通过SVR来解决排序问题(因为SVR比RankSVM要快,并且具有相似的结果),既给每一帧赋予一个label,比如第一帧的label是1,第二帧是2,依次类推…然后训练一个SVR回归模型求得权重向量u。其实最简单的就是用线性回归进行求解,在论文中也表示这样也是可行的(any other linear learning to rank method can be employed to learn VideoDarwin)。
Vector valued functions for VideoDarwin
这节主要是提及上面没有解释的向量价值函数V的选取,论文中探寻了3种形式的向量价值函数:
- Independent Frame Representation. \(V(t) = \frac{x_t}{\left|x_t\right|}\).
- Moving Average (MA). \(\sum_{t}^{t+T} x_t\).
- Time Varying Mean Vectors. \(m_t = \frac{1}{t} \cdot \sum_{i=1}^{t} x_i, v_t = m_t / \left|m_t\right|\).
作者通过实验证明第三种方式效果最好。
Experiments
VideoDarwin
VideoDarwin选取的特征:HOG, HOF, MBH and TRJ. 在实验中作者还提到VideoDarwin几种变型:
- Forward VideoDarwin (FDVD),就是将帧按时间\([x_1,x_2,…,x_n]\)进行训练得到\(u_{fow}\).
- Reverse & Forward VideoDarwin (RFDVD),就是既按上面方式得到\(u_{fow}\),然后将帧逆序\([x_n,x_{n-1},…,x_1]\)进行训练得到\(u_{rev}\).
- non-linear forward VideoDarwin (NL-FDVD),就是对特征进行一个非线性映射然后再进行FDVD训练。
- nonlinear reverse & forward VideoDarwin (NL-RFDVD),就是对特征进行一个非线性映射然后再进行RFDVD训练。
对比的baseline
选择的baseline对比方法是local 和 TP, For these baselines, at frame level we apply non-linear feature maps (i.e. power normalization for Fisher vectors and chi-squared kernel maps for bag-of-words based methods):
local: As a first baseline we use the state-of-the-art trajectory features (i.e. improved trajectories and dense trajectories) and pipelines as [1,2]. As this trajectory based baseline mainly considers local temporal information we refer to this baseline as local.
TP: We also compare with temporal pyramids (TP), by first splitting the video into two equal size subvideos, then computing a representation for each of them like spatial pyramids [3].
对比结果
对比的结果如下,这里就选了HMDB51数据集的结果展示,剩下的数据集的类似效果,详见论文。
Conclusion
一种无监督的时序信息建模的方法。
References
[1] H. Wang, A. Kl¨aser, C. Schmid, and C.-L. Liu. Dense trajectories and motion boundary descriptors for action recognition. IJCV, 103:60–79, 2013. 1, 2, 5, 6, 8
[2] H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013. 1, 2, 5, 6, 8
[3] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006. 1, 5
相关工程和代码
- http://lear.inrialpes.fr/~wang/improved_trajectories
- https://lear.inrialpes.fr/people/wang/dense_trajectories